A Compound Poisson Convergence Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Compound Poisson Convergence Theorem for Sums of m-Dependent Variables

We prove the Simons-Johnson theorem for the sums Sn of m-dependent random variables, with exponential weights and limiting compound Poisson distribution CP(s, λ). More precisely, we give sufficient conditions for ∑ ∞ k=0 ehk|P (Sn = k)−CP(s, λ){k}| → 0 and provide an estimate on the rate of convergence. It is shown that the Simons-Johnson theorem holds for weighted Wasserstein norm as well. The...

متن کامل

A Compound Poisson Approximation Inequality

We give conditions under which the number of events which occur in a sequence of m-dependent events is stochastically smaller than a suitably defined compound Poisson random variable. The results are applied to counts of sequence pattern appearances and to system reliability. We also provide a numerical example.

متن کامل

Central Limit Theorem and Poisson Convergence 8.1 Rate of Convergence for CLT

There are several ways of proving Central Limit Theorems: 1. Use characteristic or moment generating functions or some distributional transform, or 2. Use moment method to show that the k-th moment converges to the k-th moment of standard Normal for all k > 1, or 3. Use Fixed Point method (e.g., maximizing entropy given fixed mean and variance, zero bias transformation etc.) or 4. Replacement o...

متن کامل

Hierarchical Compound Poisson Factorization

Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from ...

متن کامل

Compound Poisson Cascades

Multiplicative processes and multifractals proved useful in various applications ranging from hydrodynamic turbulence to computer network traffic. Placing multifractal analysis in the more general framework of infinitely divisible laws, we design processes which possess at the same time stationary increments as well as multifractal and more general infinitely divisible scaling over a continuous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1991

ISSN: 0091-1798

DOI: 10.1214/aop/1176990555